The impact of abiotic factors on cellulose synthesis.

نویسندگان

  • Ting Wang
  • Heather E McFarlane
  • Staffan Persson
چکیده

As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diethylenetriamine supported on cellulose as a biodegradable and recyclable basic heterogeneous catalyst for the synthesis of spirooxindole derivatives

In the present study, the synthesis of diethylene triamine supported on cellulose biopolymer as a biodegradable solid basic heterogeneous catalyst was suggested. Then, the applicability of the synthesized catalyst cellulose bonded N-propyl diethylene triamine (CBPDETA) was tested for the synthesis of oxindole derivatives, an important class of potentially bioactive compounds. A various series o...

متن کامل

Diethylenetriamine supported on cellulose as a biodegradable and recyclable basic heterogeneous catalyst for the synthesis of spirooxindole derivatives

In the present study, the synthesis of diethylene triamine supported on cellulose biopolymer as a biodegradable solid basic heterogeneous catalyst was suggested. Then, the applicability of the synthesized catalyst cellulose bonded N-propyl diethylene triamine (CBPDETA) was tested for the synthesis of oxindole derivatives, an important class of potentially bioactive compounds. A various series o...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

Antibacterial activity of CuO - cellulose nano rods depends on anew green synthesis (cotton)

In this study CuO nano sheets were prepared using the cellulose extracted from green synthesis (cotton) as a novel me project. Structural properties were examined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Ultra Violet (UV-Vis). The optimum copper oxide peak was at 2 theta 〖35.44〗^°corresponding to (1 ̅11) while for the cellulose was 〖22.8〗^°correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2016